

1 Step

underlay surface

The first step we did was to extract an image from google earth so we can create a low resolution terrain of the site with Ghowl .So with this initial data we can start analysing the waterflow and slopes of the site.

2.123145, 41.445628, 0.0} 2.123145, 41.445895, 0.0} 2.123145, 41.446162, 0.0}

{2.123145, 41.446127, 0.0} {2.123145, 41.446429, 0.0} {2.123145, 41.44696, 0.0} {2.123145, 41.446963, 0.0} {2.123145, 41.44723, 0.0} {2.123145, 41.447497, 0.0}

FIZV

2 Step

After that we also generate a grasshopper definition for creating a flight path for the drone so we can gather more precise data for analysing the terrain

Iaac

Slope Analysis-Valldaura

We created a grasshopper definition for the slope analysis, where the gradient displays the angle of the slope of each vertice of the mesh we are analysing. The blue color is representing the lowest angle and the red the steepest angle

HIGHEST ANGLE

MID ANGLE

LOWEST ANGLE

Waterflow Analysis-Valldaura

We generated a waterflow analysis definition that let us visualize the way that water flows through the terrain

WATERFLOW

After several flights with the drones and analysing all the data with mission planner we were able to generate a high resolution image and also a 3d model of the site so we can run again all the grasshopper definition with a higher pressicion

There were several gaps in between the mesh which din't form a singular surface so we tried to fill the holes with a delauny mesh. But since this had over 16000 individual components we had to look for other options to analyse the terrain.

So to get a terrain we broke the mesh into its components to make a surface with the mesh points

CONTROLLED WATERFLOW DUE TO TERRAIN MANIPULATION

MODIFIED TERRAIN