Digital Fabrication
IaaC Blog
Student Research Network
- DS1: Emergent Territories
- DS2: Self Sufficient Buildings
- Digital Tectonics – Fabrication Ecologies
- IaaC Project Archives
- Design Studio I
- S4 Designing Associativity
- S2 Devices to the Home
- Digital Fabrication
- RS3/DS3: Digital Tectonics
- Digital Tools
- RS 1 Emergent Territories
- S5 Environmental Design
- S3 Information and Urban Design
- Interactive Interfaces
- S1 Interactive Systems
- Master in Advanced Architecture 02
- MAA02
- S3 - COMPUTATION FOR OPTIMIZATION (RS3_ O.S.)
- IC.1 Digital Fabrication
- RS3. Digital Tectonics
- IC.4 Digital Tools: Rhino
- DS1 Emergent Territories
- DS2 Self Sufficient Buildings
- DS3 Digital Tectonics
- RS1. Emergent Territories
- IC.2 Energy
- S2 - Environmental Design (RS2_ O.S.)
- S6 - EXPERIMENTAL STRUCTURES
- S9 FORM FINDING
- S4 - LANDSCAPE INFRASTRUCTURE
- S11 MATERIAL DISTRIBUTIONS
- MATTER AND MATERIAL ORGANISATION
- S5- PEOPLE : BIOSENSORS FOR THE CITY
- S1 - Processing (RS1_Em O.S.)
- S10 ROBOTIC SAND FORMING
- RS2. Self Sufficient Buildings
- IS- Slow Cities into Smart City
- IC.3 Theory Concepts
- Master in Advanced Architecture 2011/2012
- Advanced Architecture concepts
- S8 Advanced Materials
- RS1 S6 Asynchronous Territories
- S6 Designing Agency
- S2 Designing Associativity
- Digital Fabrication
- RS3 Digital Tectonics – Fab. Ecologies
- Digital tools: Processing
- Digital tools: Rhino
- RS1 Emergent Territories - Radical Region
- S4 Encrypted Mega-Cities
- Energy and Environmental design
- S5 Experimental Structures
- Introductory Studio
- RS3 S6 Machinic Conversations
- S7 Negotiated Formations
- RS2 S6 Particle Physics
- S3 Physical Computing
- RS3 S7 Robotic Fabrication Protocols
- S10 Robotic Fabrication
- RS2 Self Sufficient Building
- S9 Surface Active Structures
- S1 Theory Concepts – 4 Positions
- RS2 S7 Urban Biodiversity
- RS1 S7 Urban Morphologies
- Master in Advanced Architecture 2012/2013
- Digital Tectonics – Fabrication Ecologies
- Digital Tectonics – Fabrication Ecologies
- Emergent Territories – Radical Region
- Self Sufficient Building
- Advanced Architecture Concepts
- RS-VI: Advanced Interaction
- Advanced Tooling
- Brick Works Thin-Tile Vault
- S1: Designing Associativity
- Digital Fabrication
- RS-III: Digital Matter - Int. Constructions
- Digital Tools - Rhino
- Economics of Sustainability
- RS-I: Emergent Territories-Radical Region
- Environmental Design
- S3: Experimental Structures
- S5: Green Dictionary
- Hand-made vs Machine-made protocols
- Lightweight Structures 1:1
- New Interfaces
- S2: Physical Computing
- S4: Processing
- S6: Public Space Capsules
- Robotic Micro Carpentry
- RS-II: Self Sufficient Buildings
- Shell Structures And Form-Finding
- Soundtouch
- Introductory Studio: G01
- Introductory Studio: G02
- IC.3 Advanced Architecture Concepts
- RS4. Advanced Interaction
- S3. Data Informed Structures
- RS5. Design with Nature
- S1. Designing Associativity
- IC.1 Digital Fabrication
- RS3. Digital Matter
- IC.4 Digital Tools
- IC.2 Economics of Sustainability
- S4. Encrypted Rome
- S5. Environmental Analysis
- RS1. Intelligent Cities
- S6. Knowledge City
- S2. Physical Computing
- S7. Robotic Workshop
- RS2. Self Sufficient Buildings
- IS.1 G1/ Torre Baró - Energy District
- IS.1 G2 / Torre Baró - Energy District
- W1 Transversal Workshop
- Bert Balcaen
- Furqan Habib
- Future of workplace
- Gerda Antanaityte
- Lucas De Sordi
- Martin Lukac
- Moushira Elamrawy
- Nature and technology
- Nazaret Cano
- Rafael Vargas
- Visualization and Sonification
- Master in Advanced Interaction 2012/2013
- Bootcamp Barcelona-Valldaura
- Close to the Body - Research Studio
- Fabrication
- Physical computing
- Programming Fundamentals
- Radical Communication
- Smart Net Studio
- Theory Seminar - Narratives of Technology
- Material Systems
- Metabolic Structures
- Multidisiplinar Optimization
- Open Thesis Blog
- Projects Archive
- RS1. Intelligent Cities
- RS2. Self Sufficient Buildings
- RS3. Digital Matter
- RS4. Advanced Interaction
- RS5. Design with Nature
- S08. New Interfaces
- S09. Advanced Computational Paradigms
- S10. Experimental Structures
- S11. Territorial Computing
- S12. Workshop: Bifurcation
- RS 2 Self Sufficient Building
- Theory Concepts
- Internship 2013
- S6 Visual Programming
- WINGS
Category Archives: CNC Milling
Barcelona 0 emissions foam model Marko Vukovic, Andrea Debilio, Mohamad Ghamloush
Posted in CNC Milling Leave a comment
RhinoCAM
Posted in CNC Milling 1 Comment
Barcelona 0 emission foam model Marko Vukovic, Andrea Debilio, Mohamad Ghamloush
After making the 3d model of Barcelona barios El poble sec, Sants and the Zona Universitaria we went trough rhino cam and than milling and fitting the whole model .
Posted in CNC Milling 1 Comment
CNC Milling_Rhino CAM
Team: Chryssa Karakana, Diego López, Mani Khosrovani, Javier González
Neighborhood: Vallcarca i els Penitents, El Coll y La Salut
for PDF visualization, please click below:
Also posted in Uncategorized Leave a comment
Rhino Cam
“The manufacturing process aims to succesively reduce material from the stock model until it reaches the final shape of the designed part. To accomplish this, the typical machining strategy is to first use large tools to perform bulk removal from the stock, then use progressively smaller tools to remove smaller amounts of material. When the part has a uniform amount of stock remaining, a small tool is used to remove this uniform stock layer.”
RhinoCam: Transforming Digital into Real
The Institute of Advanced Architecture of Catalonia is involved in a research project to transform the city of Barcelona in a Zero Emission city.
For that, an interactive model has to be fabricated, so design decisions can be made. In this tutorial, we will describe the step by step of how to send the 3D model of the barrios of Camp del’Arpa, La Sagrera, Congrés and Navas, to the milling machine so it could be milled.
After the model was printed in a high density foam, it was inserted in the model of the entire city of Barcelona. The scale of this model is 1/2000, and it will be used as a study model. A final interactive model will be built, and this will help in the design decision.
To view the step-by-step RhinoCam2 tutorial for this model, click on the link:
Assignment 3: Model Fabrication in the CNC Milling Machine
Team members: Andreana Papantoniou, Carolina Libardi, Erina Filipovska
The aim of this assignment was to create a foam model of our barrio using the CNC Milling machine. We first prepared a 2d rhino file of our barrio which had to be printed in the laser cutter at the scale of 1:5000 and on which we discussed and examined various issues concerning the 3d printing process and the way of union the different barrios (boarders, designing methods etc.). The file comprised the streets, the blocks and the buildings, all organized in one layer in order to be engraved. The boarders of the barrio were organized in a second layer determining the cutting lines.
We created the 3d rhino file using the required information from the web and we organized the buildings in layers, according to the number of floors of each building, giving finally the corresponding height. We added the 3 cm base of the model and the 2 mm height sidewalks and we changed the scale into 1:2000. We converted the polysurfaces into meshes and union them all together.
A barrio (Camp de l’ Arpa) that has not been previously allocated to any of the groups was added to ours a posteriori. Finally, the model was printed successfully in one piece. Because of the different height of the materials, we had to cut our piece through horizontally manually, in order to fit with the neighbor areas.
The digital design process
The fabrication process in CNC Milling machine & the final model
Also posted in CNC Cutting Leave a comment